Unsupervised segmentation of low clouds from infrared METEOSAT images based on a contextual spatio-temporal labeling approach

نویسندگان

  • Christophe Papin
  • Patrick Bouthemy
  • Guy Rochard
چکیده

The early and accurate segmentation of low clouds during the night-time is an important task for nowcasting. It requires that observations can be acquired at a sufficient time rate as provided by the geostationary METEOSAT satellite over Europe. However, the information supplied by the single infrared METEOSAT channel available by night is not sufficient to discriminate between low clouds and ground during night from a single image. To tackle this issue, we consider several sources of information extracted from an infrared image sequence. Indeed, we exploit both relevant local motion-based measurements, intensity images and thermal parameters estimated over blocks, along with local contextual information. A statistical contextual labeling process in two classes, involving “low clouds” and “clear sky,” is performed on the warmer pixels. It is formulated within a Bayesian estimation framework associated with Markov random field (MRF) models. This comes to minimize a global energy function comprising three terms: two data-driven terms (thermal and motion-based ones) and a regularization term expressing a priori knowledge on the label field (expected spatial contextual properties). We propose a progressive minimization procedure of this energy function starting from initial reliably labeled pixels and involving only local computation. Thermal parameters associated to each class are estimated according to an unsupervised learning scheme enabling the handling of spatiotemporal nonstationarities. Our method produces segmentation maps displaying temporal coherency along the image sequence. Experimental results on representative meteorological situations are reported and favorably compared with NOAA/AVHRR cloud classifications which serve as reference results. They demonstrate the accuracy and efficiency of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data

In this contribution, a hybrid multi-contextual Markov model for unsupervised near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) data is presented. It incorporates scale-dependent, as well as spatio-temporal contextual information, into the classification scheme, by combining hierarchical marginal posterior mode (HMPM) estimation on directed graphs with nonca...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002